Dr. Jessica Breznik talks about her research in the American Journal of Physiology-Gastrointestinal and Liver Physiology Podcast

In this podcast first author Dr. Jessica A. Breznik of McMaster University, discusses the recently published manuscript titled “Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factor.” 

NEW & NOTEWORTHY We found that diet-induced obesity in female mice has tissue- and time-dependent effects on intestinal paracellular permeability as well as monocyte-derived and tissue-resident macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. These changes were not mediated by TNF.

Article Citation: Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factorJessica A. Breznik, Jennifer Jury, Elena F. Verdú, Deborah M. Sloboda, and Dawn M. E. Bowdish

American Journal of Physiology-Gastrointestinal and Liver Physiology 2023 324:4, G305-G321

Bowdish lab research on the evolution of MARCO featured in the New York Times

Our research on the scavenger receptor MARCO was featured in an article “Air Pollution, Evolution, and the Fate of Billions of Humans” by Carl Zimmer in the New York Times. In this manuscript we collaborated with Dr. Brian Golding, an expert in evolutionary biology in order to understand the evolution of this macrophage receptor. MARCO (or macrophage receptor with collagenous structure) is expressed on macrophages where it binds bacteria and particles such as those found in dust and air pollution. We had hypothesized that because it is the receptor for two pathogens, Streptococcus pneumoniae and Mycobacterium tuberculosis, that have played a major part in driving human evolution, that we might find evidence of areas of the receptor that were undergoing rapid evolution to protect us from this pathogen.

In order to determine which regions of the protein were changing we performed a phylogenetic analysis of the sequence of MARCO from humans, our close ancestors, the Denisovians and Neanderthals, and primates. We found a few interesting things. There was one mutation, which we call F282S (282 refers to the 282nd amino acid in the protein, the F = phenylalanine and the S= serine), had changed very rapidly. All our primate, Denisovian and Neanderthal relatives had a serine residue in that position but fully 83% of the human genomes we analyzed had a phenylalanine. The fact that this mutation spread so quickly through the population means that there must have been very strong selection pressure. We cloned both variants and found that the human specific variant was indeed better at binding inert particles and bacteria. There were a few other interesting mutations we characterized (see article below) but the take home message is that some of the evolutionary adaptations we have made to deal with pathogens may have influenced our ability to handle air pollution or, since the savannah was predicted to be a dry and dusty place, the adaptations we’ve made to deal with particulates in the air may have changed our response to pathogens.

To read the full article, see below.

Human-specific mutations and positively-selected sites in MARCO confer functional changes. Novakowski KE, Yap NVL, Yin C, Sakamoto K, Heit B, Golding GB, Bowdish DME. Mol Biol Evol. 2017 Nov 20. doi: 10.1093/molbev/msx298.
PMID: 2916561

Publication: Age-associated Inflammation alters the aging trajectory.

This article is written for lay/broad audiences and describes what age-associated inflammation is and why it may be key to healthy/unhealthy aging.

White paper: “Paving The Way For Immunization Innovation” with the Lung Association Ontario

Publication: Myeloid-Derived Suppressor Cells in Aged Humans

Myeloid-Derived Suppressor Cells in Aged Humans

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells whose
immunosuppressive activities contribute to cancer and other diseases. MDSCs
appear to increase with age, and this presumably contributes to immunosuppression
and the increased incidence of certain diseases. Why MDSCs increase with
age is not entirely clear. Herein we present evidence that MDSC expansion is due
in part to age-related changes in hematopoiesis, including the acquisition of
mutations that favor myelopoiesis, which are compounded by changes in the
aging microenvironment that favor the production of MDSCs.

Publication: Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and pain.

Dr. Dawn Bowdish and her PhD student Dessi Loukov  collaborated with Dr. Monica Maly and Sara Karampatos (Rehabilitation Science) and found that monocytes were more activated and pro-inflammatory in women with osteoarthritis, and that elevated inflammation and body mass index were associated with increased monocyte activation. Further, the team found that women with osteoarthritis and more activated monocytes experienced worse pain than individuals with less activated monocytes. These findings highlight the importance of modulating inflammation and body mass to manage osteoarthritis and open up new avenues for therapeutic research.

Read the full publication in the Osteoarthritis Research Society International (OARSI) Journal

As featured in Eureka Alert: https://www.eurekalert.org/pub_releases/2017-11/mu-rul112717.php