Publication: Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and pain.

Dr. Dawn Bowdish and her PhD student Dessi Loukov  collaborated with Dr. Monica Maly and Sara Karampatos (Rehabilitation Science) and found that monocytes were more activated and pro-inflammatory in women with osteoarthritis, and that elevated inflammation and body mass index were associated with increased monocyte activation. Further, the team found that women with osteoarthritis and more activated monocytes experienced worse pain than individuals with less activated monocytes. These findings highlight the importance of modulating inflammation and body mass to manage osteoarthritis and open up new avenues for therapeutic research.

Read the full publication in the Osteoarthritis Research Society International (OARSI) Journal

As featured in Eureka Alert:

Publication: Human-specific mutations and positively-selected sites in MARCO confer functional changes.

First author on the publication, PhD student Kyle Novakowski of Dr. Dawn Bowdish’s lab.
A common element that links ancient fish that dwell in the darkest depths of the oceans to land mammals, Neanderthals, and humans is the necessity to defend against pathogens. Hundreds of millions of years of evolution have shaped how our innate immune cells, such as macrophages, detect and destroy microorganisms.

In a new study led by Dr. Dawn Bowdish (in collaboration with Dr. Brian Golding) and her PhD student Kyle Novakowski, the team identified novel sites within a macrophage receptor, MARCO, that are under positive selection and are human-specific. The team demonstrated the importance of these sites by site-directed mutation and showed a reduction in cellular binding and uptake of pathogens. These findings demonstrate how small genetic changes in humans can influence how we defend ourselves against pathogens.

Read the full publication in Oxford University Press.

Human-specific mutations and positively-selected sites in MARCO confer functional changes. Novakowski KE, Yap NVL, Yin C, Sakamoto K, Heit B, Golding GB, Bowdish DME. Mol Biol Evol. 2017 Nov 20. doi: 10.1093/molbev/msx298.
PMID: 2916561

Publication: Tumor necrosis factor drives increased splenic monopoiesis in old mice


PhD student Dessi Loukov in the lab of Dr. Dawn Bowdish, recently published a study showing that splenomegaly in old mice is a result of extramedullary hematopoiesis, and that this increased monopoiesis is driven by age-associated increase in TNF. The study compared changes in the microarchitecture and composition of the spleen in old and young mice and found that in old mice, there was an increase in the size and cellularity of the red pulp (the site of hematopoiesis of myeloid precursors). To study the role of TNF in the development of extramedullary hematopoiesis, they used TNF KO mice and found that these mice did not have increased extramedullary monopoiesis. Furthermore, they demonstrated that increased splenic myelopoiesis was a result of the aging microenvironment. This work suggests that strategies which aim to decrease the inflammatory microenvironment that comes with aging, would be effective in reducing inflammatory diseases propagated by cells of the myeloid lineage. Read More


Publication: A naturally occurring transcript variant of MARCO reveals the SRCR domain is critical for function

Macrophages play a critical role in innate immunity by detecting, engulfing and destroying pathogenic bacteria and alerting neighbouring immune cells to join the fight against infection. They have many different receptors on their cell surface that allow them to carry out these important processes. A particular group of receptors called Scavenger Receptors are vital to this response. A recent study published in Immunology and Cell Biology by PhD student Kyle Novakowski from the laboratory of Dr. Dawn Bowdish has uncovered a mechanism by which a specific scavenger receptor contributes to macrophage-specific antibacterial immunity.

Scavenger Receptors are evolutionarily ancient and have evolved to recognize a wide array of pathogens by detecting ligands that are common across many pathogenic organisms. A particularly important Scavenger Receptor is Macrophage Receptor with Collagenous Structure, or MARCO. MARCO has been shown to significantly contribute to the clearance of Streptococcus pneumoniae colonization of the nose and in models of pneumococcal pneumonia. The NSERC-funded study took a unique approach to functionally characterizing how MARCO contributes to innate immunity by studying a naturally-occurring variant of the receptor. The study highlighted the importance of a particular domain of the receptor that is required for macrophages to bind and internalize ligands. The study also showed that the domain is necessary to enhance the pro-inflammatory response to pathogenic Streptococcus pneumoniae and can enhance cellular adhesion; both vital to proper macrophage functions.

To read the article, please click here.

‘Inflamm-aging’ by seniors may impact pneumonia susceptibility

Antibiotic treatment alone may not be sufficient to treat pneumonia in older adults. In fact, it appears as though the inflammation that comes naturally with age increases the risk of developing pneumonia. “It sounds counterintuitive to limit inflammatory responses during a bacterial infection, but clinical observations and our research indicates anti-bacterial strategies need to be tailored to the age of the patient,” said MIRC’s Associate Professor Dawn Bowdish.

Aging is accompanied by a chronic state of low-level inflammation — sometimes called ‘inflamm-aging’ — which is associated with diseases such as cardiovascular disease, dementia and infections, particularly pneumonia. Upon recognition of an infectious agent, an acute inflammatory response is required to fight infection and resolves shortly after. However, in older adults, where systemic inflammation is already elevated, increases in inflammation during infection do not resolve as quickly. Exposure to these high levels of inflammation appears to impair the ability of monocytes and macrophages to fight infection.

Published today in the journal PLoS Pathogens, MIRC graduate Dr. Alicja Puchta & PhD student Avee Naidoo demonstrated that the higher levels of inflammation in the blood of old mice caused the premature egress of inflammatory monocytes into the blood stream, and contributed to greater systemic inflammation. Although small amounts of inflammation are required to fight infection, enhanced production of inflammation in old mice lead to reduced monocyte and macrophage function. Reducing levels of inflammation in the young mice had no effect but reducing levels in the old mice resulted in improved bacterial clearance and survival against S.pneumoniae.

The research follows a 2015 McMaster study that showed that older adults with pneumonia do better when given drugs, such as corticosteroids, to reduce inflammation in addition to antibiotics. “Our study in mice is consistent with clinical studies that recommend using anti-inflammatories as part of treatment to improve older adults’ defence against pneumonia, and that points to the development of better care,” said Bowdish.

To read the PLoS Pathogens article, please click here.

Manuscript: The evolution of the scavenger receptor cysteine-rich domain of the class A scavenger receptors

Do you work out? Cause you’re built like a rock! A rock like Dwayne “The Rock” Johnson! You have an impenetrable body thanks to your complex immune system. So how did you get such a sophisticated immune system?

In the Bowdish lab, we do more than just macrophage biology; we also study the evolution of the immune system! The scavenger receptors are a group of receptors that play an important role in your immune system by binding harmful bacteria. Our most recent publication by Yap et al., looks at how these receptors evolved and how evolution has changed their function. These receptors are found in various forms of life such as sharks, frogs, and mammals, but the function and appearance of these receptors has changed over time. Check out the open access….