Yap N, Whelan FJ, Bowdish DM and Golding B (2015). The Evolution of the Scavenger Receptor Cysteine-Rich Domain of the Class A Scavenger Receptors. Front. Immunol. 6:342. doi: 10.3389/fimmu.2015.00342

Yap N, Whelan FJ, Bowdish DM and Golding B (2015). The Evolution of the Scavenger Receptor Cysteine-Rich Domain of the Class A Scavenger Receptors. Front. Immunol. 6:342. doi: 10.3389/fimmu.2015.00342

Abstract

The class A Scavenger Receptor (cA-SR) family is a group of five evolutionarily related innate immune receptors. The cA-SRs are known for their promiscuous ligand binding; as they have been shown to bind bacteria such as Streptococcus pneumoniae, and Escherichia coli, as well as different modified forms of low-density lipoprotein. Three of the five family members possess a Scavenger Receptor Cysteine Rich (SRCR) domain while the remaining two receptors lack the domain. Previous work has suggested that the Macrophage Associated Receptor with COllagenous structure (MARCO) shares a recent common ancestor with the non-SRCR-containing receptors; however the origin of the SRCR domain within the cA-SRs remains unknown. We hypothesize that the SRCR domains of the cA-SRs have a common origin that predates teleost fish. Using the newly available sequence data from sea lamprey and ghost shark genome projects, we have shown that MARCO shares a common ancestor with the SRCR-containing proteins. In addition, we explored the evolutionary relationships within the SRCR domain by reconstructing the ancestral SRCR domains of the cA-SRs. We identified a motif that is highly conserved between the cA-SR SRCR domains and the ancestral SRCR domain that consist of WGTVCDD. We also show that the GRAEVYY motif, a functionally important motif within MARCO, is poorly conserved in the other cA-SRs and in the reconstructed ancestral domain. Further, we identified three sites within MARCO’s SRCR domain which are under positive selection. Two of these sites lie adjacent to the conserved WGTVCDD motif, and may indicate a potential biological function for these sites. Together these findings indicate a common origin of the SRCR domain within the cA-SRs; however different selective pressures between the proteins may have caused MARCOs SRCR domain to evolve to contain different functional motifs when compared to the other SRCR-containing cA-SRs.

Love RJ, Patenaude M, Dorrington M, Bowdish DM, Hoare T, Jones KS. An investigation of scavenger receptor A mediated leukocyte binding to polyanionic and uncharged polymer hydrogels. J Biomed Mater Res A. 2015 May;103(5):1605-12. doi: 10.1002/jbm.a.35297.

Love RJ, Patenaude M, Dorrington M, Bowdish DM, Hoare T, Jones KS. An investigation of scavenger receptor A mediated leukocyte binding to polyanionic and uncharged polymer hydrogels. J Biomed Mater Res A. 2015 May;103(5):1605-12. doi: 10.1002/jbm.a.35297.

Abstract
Cell adhesion to biomaterials can be mediated in part by mechanisms aside from the traditionally recognized opsinization and integrin binding mechanisms. In this study, we investigated the role of scavenger receptor A (SR-A) in leukocyte binding to a series of well-controlled polyanionic and uncharged hydrogels based on a poly(N-isopropylacrylamide) backbone. The hydrogels were injected in the peritoneal cavity of SR-A knockout (KO) and wild-type mice using a minimally invasive procedure and allowed to set in situ. After 24 h, the hydrogels were recovered and analyzed, the peritoneal cavity was lavaged, and cytokine concentrations were assessed by ELISA. The polyanionic hydrogels retrieved from the KO animals were found to be completely devoid of adherent leukocytes, which were present in other materials regardless of the mouse strain in which they were injected. Results from a subsequent in vitro cellular adhesion study with a RAW264.7 cell line failed to yield a similarly definitive role for SR-A in the cellular binding of a polyanionic hydrogel. Taken together, the results of this study show that SR-A mediates leukocyte adhesion to a polyanionic hydrogel in the peritoneal cavity, but other adhesion mechanisms contribute to cellular binding in vitro. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1605–1612, 2015.

Verschoor CP, Dorrington MG, Novakowski KE, Kaiser J, Radford K, Nair P, Anipindi V, Kaushic C, Surette MG, Bowdish DME. MicroRNA-155 Is Required for Clearance of Streptococcus pneumoniae from the Nasopharynx. Infect Immun. 2014 Nov;82(11):4824-33. doi: 10.1128/IAI.02251-14.

Verschoor CP, Dorrington MG, Novakowski KE, Kaiser J, Radford K, Nair P, Anipindi V, Kaushic C, Surette MG, Bowdish DME. MicroRNA-155 Is Required for Clearance of Streptococcus pneumoniae from the Nasopharynx. Infect Immun. 2014 Nov;82(11):4824-33. doi: 10.1128/IAI.02251-14.

This paper outlines how microRNA- (miR-)155 regulates the immune response to S. pneumoniae colonization in the nasal passages of mice by stimulating the differentiation of Th17 cells. 

Kaiser JC, Verschoor CP, Surette MG, Bowdish DME. Host cytokine responses distinguish invasive from airway isolates of the Streptococcus milleri/anginosis group. BMC Infect Dis. 2014 Sep 11;14:498. doi: 10.1186/1471-2334-14-498.

Kaiser JC, Verschoor CP, Surette MG, Bowdish DME. Host cytokine responses distinguish invasive from airway isolates of the Streptococcus milleri/anginosis group. BMC Infect Dis. 2014 Sep 11;14:498. doi: 10.1186/1471-2334-14-498.

This paper demonstrates that there are host- and strain- specific responses to isolates of the Streptococcus milleri/anginosis group and that isolates from invasive disease appear to be more immunostimulatory than those from commensal relationships.

“Comprehensive & simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS” 2014. Fei et al. Anal Bioanal Chem.

 

Bowdish-McCarry PhD candidate, Fan Fei, publishes a protocol she created to study the endometabolome of macrophages and microbes in Analytical & Bioanalytical Chemistry. Click the image for the .pdf.
Fei 2014 covershot ABC

Whelan et al. The Loss of Topography in the Microbial Communities of the Upper Respiratory Tract in the Elderly. Ann Am Thorac Soc. 2014 Mar 6.

Whelan FJ, Verschoor CP, Stearns JC, Rossi L, Luinstra K, Loeb M, Smieja M, Johnstone J, Surette MG, Bowdish DM. The Loss of Topography in the Microbial Communities of the Upper Respiratory Tract in the Elderly. Ann Am Thorac Soc. 2014 Mar 6.

This paper describes how the microbial communities of the anterior nares and nasopharynx change between adults and the elderly. 

PradhuDas et al. Standardizing Scavenger Receptor Nomenclature. J Immunol. 2014 Mar 1;192(5):1997-2006.

PrabhuDas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, Means TK, Moestrup SK, Post S, Sawamura T, Silverstein S, Wang XY, El Khoury J. Standardizing scavenger receptor nomenclature. J Immunol. 2014 Mar 1;192(5):1997-2006. doi: 10.4049/jimmunol.1490003.

PradhuDas et al screen shot

Puchta et al. Characterization of inflammatory responses during intranasal colonization with Streptococcus pneumoniae. Vis Exp. 2014 Jan 17;(83):e50490. doi: 10.3791/50490.

Puchta A, Verschoor CP, Thurn T, Bowdish DMCharacterization of inflammatory responses during intranasal colonization with Streptococcus pneumoniae. J Vis Exp. 2014 Jan 17;(83):e50490. doi: 10.3791/50490.

“Myeloid-Derived Suppressor Cells, Age & Cancer” 2013. Oncoimmunology.

Dr. Bowdish discusses the implication of our Verschoor et al publication “Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer.” in studies of aging and cancer in the below commentary.

Click image for .pdf.

MDSC commentary

 

This is an open access publication so please feel free to use the following image in presentations/publications providing that it is properly referenced.

MDSC commen figure