

SAMPLE PREPARATION FOR RNA-SEQ

Keith Lee & Michelle Pinto: April 2013

Bowdish Lab, McMaster University Hamilton, ON, Canada <u>www.bowdish.ca</u>

BACKGROUND

- For preparation of RNA samples for RNA-seq

NOTES

Wear goggles, gloves and coat

EQUIPMENT

- Equipment:
 - Vortex
 - Centrifuge
 - Pipettes and Tips, Tubes
 - Aligent 2100 Bioanalyzer
- Materials:
 - o Aligent RNA 6000 Kit
 - RiboZero Magnetic Kit Human/Mouse/Rat (Epicentre MRZH11124)
 - o RNA Clean XP Kit
 - o Turbo DNase
 - Superscript III First-Strand Synthesis System
 - o RNase H
 - o NEB Buffer 2
 - Klenow fragment DNA polymerase
 - o Ampure XP
 - o 100% Ethanol
 - RNAse-free water

PROTOCOL

- 1. Check RNA integrity using the Aligent 2100 Bioanalyzer (get training from Jane-Ann)
 - a. Preparatory work
 - i. Aliquot $1\mu L$ of each RNA sample into a new 1.5mL microcentrifuge tube
 - ii. Sign-in on the sign-in sheet located beside the Bioanalyzer
 - iii. Remove reagents from fridge/freezer and thaw at room temperature for 30 minutes
 - iv. Turn the heat block on to 70°C
 - v. Clean Bioanalyzer electrodes
 - 1. Fill "RNase Zap" electrode cleaner with 350µL RNase Zap; shake chip

- 2. Open the machine lid and place electrode cleaner into the Bioanalyzer in the correct position; gently close lid using two hands and leave for 1 minute
- 3. Fill " dH_2O " electrode cleaner with 350µL of dH_2O ; shake chip
- 4. Open the machine lid, remove the "RNase Zap" chip and insert the " dH_2O " chip; gently close lid using two hands and leave for 1 minute
- 5. Open the machine lid, remove the " dH_2O " chip
- 6. Keep lid open for 30 seconds for the water on the electrodes to evaporate before closing the lid
- b. Prepare RNA 6000 Nano Gel
 - i. Pipette 500µL of RNA 6000 nano gel matrix into spin filter
 - ii. Centrifuge gel matrix at 1500g for 10 minutes at room temperature
 - iii. Aliquot 65μ L into a new 0.5mL tube
 - iv. The remainder can be stored at 4°C and can be used within 1 month of preparation
- c. Prepare gel-dye mix
 - i. Vortex the RNA 6000 nano dye for 10 seconds
 - ii. Add 1 μ L of RNA 6000 nano dye to the 65 μ L filtered gel
 - iii. Vortex solution well and spin at 13000g for 10 minutes at room temperature
- d. Prepare samples and ladder
 - i. Heat denature the samples (1 μ L) and ladder (1 μ L) at 70°C for 2 minutes
 - ii. Quick spin all samples to remove condensation on the lid
 - iii. Keep samples at room temperature until ready to use
- e. Load the gel-dye mix
 - i. Place a new RNA 6000 nano chip on the chip priming station
 - ii. Pipette 9µL of the gel-dye mix into the well marked (G)
 - iii. Press down plunger until it is held by the clip after closing the priming station
 - iv. Wait 30 seconds and then release clip (plunger should move at least 0.3mL upwards within 1 second; if not, the chip may not be properly pressurized and may need to be reprimed)
 - v. Pipette 9μ L of the gel-dye mix into the other 2 "G" wells
- f. Load the RNA 6000 nano marker
 - i. Pipette 5µL of RNA 6000 nano marker into each sample well and the ladder well
- g. Load the ladder and the samples
 - i. Add 1µL of ladder into the ladder well
 - ii. Add 1 μ L of sample into each sample well and 1 μ L of the marker into each unused well
 - iii. Vortex the loaded chip on IKA vortexer for 1 minute at 2400rpm
 - iv. Run the chip in the Aligent 2100 bioanalyzer within 5 minutes
 - v. Save results onto computer
- h. Cleanup
 - i. Remove chip immediately after run is complete
 - ii. Fill "dH₂O" electrode cleaner with 350μ L of dH₂O; shake chip
 - iii. Open the machine lid and insert the "dH $_2$ O" chip; gently close lid using two hands and leave for 1 minute
 - iv. Open the machine lid, remove the " dH_2O " chip
 - v. Keep lid open for 30 seconds for the water on the electrodes to evaporate before closing the lid

- vi. Empty contents of the "RNase Zap" and "dH $_2$ O" chips into the garbage but save the chips to reuse next time
- vii. Turn off the Bioanalyzer, computer and heating block
- viii. Complete the sign-in sheet with remaining information
- i. Analysis
 - i. Ensure RNA has a high RNA Integrity Number (preferably >8)
- 2. rRNA depletion using RiboZero kit
 - a. Bead-washing procedure
 - i. Pipette 225µL of magnetic beads (after vortexing) into a 1.5mL tube, per sample
 - ii. Place tube on magnetic stand for 1 minute
 - iii. Remove supernatant
 - iv. Add 225 μ L of RNase-free H₂O; vortex or pipette up and down
 - v. Place tube on magnetic stand for 1 minute
 - vi. Remove supernatant
 - vii. Remove tube from magnetic stand
 - viii. Add $65\mu L$ of magnetic bead resuspension solution and vortex
 - ix. Store at room temperature until ready
 - b. Treatment of RNA sample
 - i. Determine volume of RNA to use
 - 1. Based upon the highest RNA concentration in your samples, calculate a volume that contains either 1-2.5µg or 2.5-5µg of RNA
 - ii. In a RNase-free tube, mix:
 - x µL RNase-free H2O
 - 4µL RiboZero reaction buffer
 - y μL RNA sample (max 28μL if input is 1-2.5μg, max 26μL if input is 2.5-5μg)
 - z μL RiboZero RNA removal sol'n (8μL for 1-2.5μg RNA, 10μL for 2.5-5μg RNA)
 - 40 μL Total
 - iii. Mix by pipetting gently
 - iv. Incubate at 68°C on a heat block for 10 minutes
 - v. Store at room temperature for 15 minutes
 - c. rRNA removal
 - i. Add 40μ L (all) of treated RNA sample to magnetic beads and, without changing pipette tips, pipette up and down 10x, then vortex sample
 - ii. Place sample at room temperature for 10 minutes, mixing every couple of minutes
 - iii. Vortex at max speed for 5s
 - iv. Place at 50°C (on heating block) for 7 minutes (avoid significant condensation)
 - v. Place on magnetic stand for 1 minute
 - vi. Carefully remove supernatant (containing RNA, around 85-90µL) and transfer to new microcentrifuge tube
- 3. RNA Clean XP Kit purification
 - a. Add 180 μ L of RNA clean beads to depleted RNA
 - b. Mix by pipetting up and down 10x gently
 - c. Incubate at room temperature for 15 minutes
 - i. During incubation, prepare fresh 80% EtOH
 - d. Place tube on magnetic stand for 5 minutes
 - e. Remove and discard supernatant, do not disturb the bead

- f. While still on stand, add 200µL of freshly prepared 80% EtOH
- g. Incubate for 30s on stand, then remove supernatant without disturbing beads
- h. Repeat 80% EtOH wash
- i. Remove supernatant, allow beads to dry on stand for 10 minutes
- j. Take tube off stand, add $32\mu L H_2O$ to elute RNA
- k. Thoroughly resuspend beads by gently pipetting 10 times
- I. Incubate at room temperature for 2 minutes
- m. Place on magnetic stand for 5 minutes (or until solution is clear)
- n. While still on stand, collect supernatant into a new tube and place on ice
- o. Aliquot 2µL from each 32µL sample into a new tube for use with the Bioanalyzer (give samples to Christine in the Farncombe institute to analyze using the Pico kit)
- p. Continue or store at -80°C
- 4. Turbo DNase digestion
 - a. Add the following to a RNase-free tube:
 - 30 µL rRNA-depleted RNA (collected from previous step)
 - 1.5 µL Turbo DNase
 - $3.5 \,\mu\text{L}$ 10x buffer
 - b. Mix contents with pipette
 - c. Incubate for 30 minutes at 37°C
- 5. RNA Clean XP Kit purification (same as Step 3)
 - a. Same as step 2 but with $70\mu L$ beads (note: 2x volume of reaction)
 - b. Elute with $12\mu L H_2O$
 - c. Continue or freeze at -80°C
- 6. 1st strand cDNA synthesis
 - a. Add the following to a RNase-free PCR tube:
 - $10 \ \mu L$ RNA from previous step
 - $1\,\mu L$ dNTPs
 - 1 μL Random hexamers
 - 12 μL Total
 - b. Place at 65°C on thermal cycler for 5 minutes
 - c. In order, prepare the following mix (per sample):
 - $2 \ \mu L$ 10x RT Buffer
 - 4 μL MgCl₂
 - $2 \ \mu L$ DTT
 - 1 µL RNase Out
 - 1 μL SSC III
 - 10 µL Total
 - d. Add the $10\mu L$ mix to the first mixture
 - e. Incubate for 10 minutes at room temperature
 - f. Incubate for 50 minutes at 50°C and then 5 minutes at 85°C in a thermal cycler
 - g. Continue or freeze at -80°C
- 7. Ampure XP DNA purification
 - a. To the $22\mu L$ of the SSCIII mix from the previous step, add $44\mu L$ Ampure XP beads
 - b. Mix by pipetting 10 times
 - c. Incubate at room temperature for 5 minutes

- i. Prepare fresh 80% EtOH in the meantime
- d. Place tubes on magnetic stand and let stand for 1 minute
- e. Remove supernatant from each sample and discard
- f. Add 200 μL of 80% EtOH to each sample and incubate for 30s
- g. Remove supernatant and repeat 200 μL 80% EtOH wash
- h. Air dry beads for 10-15 minutes (preferably until you can see cracks in the bead)
- i. Remove tubes from the magnetic stand and elute DNA by adding $22\mu L\,H_2O$ to beads
- j. Mix well by pipetting
- k. Place tubes back on stand until solution is clear
- I. Transfer $22\mu L$ supernatant to a new tube
- m. Continue or freeze at -80°C
- 8. 2nd strand cDNA synthesis
 - a. Add the following to a nuclease-free PCR tube:
 - 22 μ L 1st strand cDNA from previous step
 - 1 µL RNase H
 - 3 μL dNTPs (10mM)
 - 3 μL #2NEB Buffer
 - 1 μL Klenow fragment (DNA polymerase)
 - 30 µL Total
 - b. Incubate at 16°C for 2 hours in a thermal cycler
 - c. Continue or freeze at -80°C
- 9. Ampure XP DNA purification
 - a. Same as step 7 but with 60µL beads
 - b. Elute with $50\mu L\,H_2O$
 - c. Continue or freeze at -80°C
- 10. Covaris sonication (Covaris S220)
 - a. Use the following protocol for 50µL samples, 150 base pairs
 - i. Peak power: 175W
 - ii. Duty factor: 20%
 - iii. Cycles/burst: 200
 - iv. Time: 155s
 - b. Continue or freeze at -80°C
- 11. End repair
 - a. Make master mix (per sample)
 - 10 µL 10x Buffer
 - 5 µL NEB End Repair Enzyme Mix
 - 35 μ L Sterile (nuclease-free) H₂O
 - 50 µL Total
 - b. Add the 50µL master mix to each 50µL fragmented cDNA sample
 - c. Place in thermal cycler for 30 minutes at 20°C
- 12. Ampure XP DNA Purification
 - a. Same as step 7 but with 160µL beads (1.6x volume)
 - b. Elute with $42\mu L\, H_2O$
 - c. Continue or freeze at -80°C

- 13. dA-tailing
 - a. Add the following to a nuclease-free PCR tube:
 - 42 µL End-repaired cDNA
 - 5 µL dA-tailing reaction buffer
 - 3 μL Klenow fragment
 - 50 µL Total
 - b. Place in thermal cycler for 30 minutes at 37°C
- 14. Ampure XP DNA purification
 - a. Same as step 7 but with 90µL beads (1.8x volume)
 - b. Elute with $25\mu L H_2O$
 - c. Continue or freeze at -80°C
- 15. Adapter ligation
 - a. Add the following to a nuclease-free PCR tube:
 - 25 μL dA-tailed cDNA
 - 10 µL Adapters for Illumina
 - 10 µL Ligase buffer (5x)
 - 5 μL Ligase
 - 50 µL Total
 - b. Place in thermal cycler for 15 minutes at 20°C
 - c. Add 3µL of USER enzyme to each sample
 - d. Place in thermal cycler for 15 minutes at 37°C
- 16. Ampure XP DNA purification
 - a. Same as step 7 but with 50µL beads (1.0x volume)
 - b. Elute with $34\mu L H_2O$
 - c. Continue or freeze at -80°C
- 17. PCR amplification with indexes
 - a. Create the following master-mix (per sample)
 - 0.25 µL Taq polymerase
 - 5 μL 10x Tag buffer
 - 1.5 μL MgCl₂ (50mM)
 - 1 μL dNTPs (10mM)
 - 2.5 μL Universal Primer (25μM)
 - 3.25 μL H₂O
 - 13.5 µL Total
 - b. Add the master mix to the 34μ L cDNA sample
 - c. Add 2.5μ L of a unique index primer (25μ M) to each sample
 - i. For the index primers, use NEBNext Index Sets 1 and 2, or design custom primers
 - d. Amplify samples with the following PCR reaction:
 - i. Initial denaturation 94°C 3 minutes 45 seconds
 - ii. Denaturation 94°C 30 seconds
 - 65°C iii. Annealing iv. Extension
 - 72°C 30 seconds
 - v. Final extension 72°C 10 minutes
 - 4°C vi. Hold
- 18. Ampure XP DNA purification

- a. Same as step 7 but with $50\mu L$ beads (1.0x volume)
- b. Elute with $27\mu L\,H_2O$
- c. Continue or freeze at -80°C
- 19. Quality Check and RNA sequencing run
 - a. Provide samples to Christine King in the Farncombe Metagenomics Facility, who will:
 - i. Run a Bioanalyzer run (DNA chip) to validate the size of your cDNA library (fragments are expected to be approximately ~260 base pairs) and to rule out the possibility of adapter-dimers in your library
 - ii. Run a qPCR reaction to quantify the concentration of your samples
 - iii. Sequence your samples using an Illumina HiSeq machine